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Abstract
R. M. Santilli has proposed the innovative isodual theory of antimatter for the classical
representation of neukal or charged antimatter bodies in a way compatible with
availabie classical experimental evidence on antimatter. Santilli's isodual theory is
equivalent to charge conjugation at the operator level, thus being compatible with
experimental data on antimatter also at the particle level. A first prediction of the
isodual theory holding at all levels of study, from the isodual Newtonian mechanics to
the isodual Riemannian geometry, is that matter and antimatter experience a
gravitational repulsion (antigravity) due to the negative value of the curvature tensor
requested by matter-antimatter conjugation. A second prediction of the isodual theory
is the existence of antimatter galaxies and, of course, antimatter asteroids traveiing in
space, that could represent a threat to our planet. Since Earth appears to have been hit
in the past by antimatter asteroids (as it seems to be the case for the 1908 Tunguska
explosion in Siberia), the author presents in this paper, apparently for the first time, a
study of possible trajectories that would lead an antimatter asteroid to collide with our
planet under the assumption of the repulsive gravitational interaction between Earth
and the antimatter asteroid. Moreover, an estimate of the minimum approach speed
required for an antimatter asteroid to impact with Earth is theoretically and
numerically identified at differcnt distances from our planet, along with other
considerations about the trajectories.
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1. Introduction

Having been conceived before the discovery of antimatter, Newtonian mechanics,
Galileian relativity and Einsteinian special and general relativities are not able to give
a classical representation of neutral antimatter. As a consequence, matter and
antimatter are commonly believed to differ only in the sign of the charge in
contradiction with the annihilation process, quantization and other aspects. This
occurrence created a scientific imbalance , because throughout the 20th century matter
was studied at all possible levels, from Newtonian mechanics to second quantization,
while antimatter was solely studied at the particle level (see monograph [1] for
hi storical references and technical details).

In order to resolve this scientific imbalance, R. M. Santilli has proposed the innovative
isodual theory of antimatter for the classical representation of neutral or charged
antimatter bodies in a way compatible with available classical experimental evidence
on antimatter. Santilli's isodual theory is equivalent to charge conjugation at the
operator level, thus being compatible with experimental data on antimatter also at the
particle level (see [1] for more details).

A second prediction of the isodual theory is the existence of antimatter galaxies that
appear to be confirmed by recent astrophysical observations based on a new telescope
with concave lenses 12] and preliminarily confirmed by independent scholars in ref.
t3l.

The existence of antimatter galaxies evidently implies the existence of antimatter
supernova and, therefore, of antimatter asteroids traveling through the universe, with
consequential danger for our planet (see Ref. 12] andpapers quoted therein).

Since Earth appears to have been hit in the past by antimatter asteroids (as it seems to
be the case for the 1908 Tunguska explosion in Siberia, see [4]), the author presents in
this paper, apparently for the first time, a study of possible trajectories that would lead
an antimatter asteroid to collide with our planet under the assumption of the repulsive
gravitational interaction between Earth and the antimatter asteroid.

Other considerations are also made about the nature of these trajectories, the minimum
velocity needed to impact Earth (since the Sun's gravity would repulse an approaching
antimatter body slowing it down) and the minimum angle between the direction of
arrival and the Sun at which an antimatter asteroid can impact Earth without being
deviated. These aspects are investigated both theoretically and numerically, using an
optimization process analogous to that used by the author in preceding work [5].



2. Modelization

To model the trajectory of an antimatter asteroid, we have to consider Newton's law of
universal gravitation, adapting it to our case. For the generic n-th body of the Solar
System, we can write:

Mn. MEu ^ Mn.Mast
fn=U' ,J - -lr' lJ

(1)

where:

, Fn is the force applied to the antimatter asteroid by the gravity of the n-th body
considered. G is the gravitational constant. M, is the mass of the n-th body considered. Mdo*is the isodual mass of the antimatter asteroid. r is the distance between the two bodies (considered point-like)

Hence the vectorial form:

E M_MI-- MnMn.r
"n- -GF;'(r-r)= cffi'(r-r) (2)
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where:. Fn is the 3-components force vector. r is the 3-components vector representing the distance of the asteroid from a
fixed reference frame. r, is the 3-components vector representing the distance of the n-th body
considered from a fixed reference frame

At this point, we must consider the effect of all the major bodies of the Solar System
at the same time, making a summation of the forces due to every celestial body:

dzr +q#:GZr'# (4)
,l=1



For the calculations all the planets were considered plus the sun and pluto.
In order to determine the state of the asteroid (position and velocity) at every time, we
need then to solve a system of 6 non-linear differential equations:
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The positions of the planets in this case are known data taken from available
ephemeris, since the mass of the asteroid, and therefore its gravitational effect on the
bodies of the Solar System, is considered negligible, so only the effects of planets on
the asteroid are computed.

This system of equations, due to its complexity, can be solved only via numerical
integration.
By defining a starling condition, in this case the initial sate of the asteroid, and the
duration of the propagation, we can integrate the equations and obtain a trajectory in
space.

At this point, with the choice of an initial time and relative initial state, we can
propagate the trajectory forward in time and obtain a unique solution, but this
approach makes it extremely difficult to find collisions with Earth, since a priori we
have no idea where the initial conditions will lead the asteroid.

Another more useful approach is to give the program the final conditions, in terms of
position and time (using of course the position of Earth at that time) and integrate
backwards in time, in order to obtain the initial state at another arbitrary time. This
way, we still have the 3 components of the final speed as degrees of freedom to obtain
different trajectories in space.

It is correct to use this approach within the limits of model used, since in our
approximation all forces are conservative, so the motion itself is reversible in time



without violating physical laws. In the real world, we would have other interactions,
such as those with solar wind and sunlight, but these interactions have not been
included at this level, due to their assumed small entity and to still unsolved problems
about the effects of matter light hitting an antimatter body (see paragraph 5).

3. Examples of trajectories

Here we present some examples of trajectories obtained with the above presented
equations from arbikary conditions. For clarity's sake only inner planets are
represented (Sun, Mercury, venus, Earth and Mars), while outer planets are
considered in calculations but not represented in these graphs, to preserve readability.

la Figure 1, we have a comparison between the forward propagated trajectories of a
matter asteroid and an antimatter asteroid, starting at the same position, with the same
velocity and at the same time.
We can see that the two trajectories are completely different, since the matter asteroid
turns left and passes behind the Sun, while the antimatter one is deflected to the right
and escapes the Solar System without getting even close to the Sun.

In Figures Figure 2 toFigure 4 we have examples of forward propagated trajectories of
antimatter asteroids in our Solar System, both close to and outside the ecliptic plane.

In Figures Figure 5 to Figure 8 we have examples of backward propagated trajectories
of antimatter asteroids, whose ending position is fixed at Earth, while the impact
velocity is arbitrarily chosen.
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Trajectory of antimatter asteroid in the inner Soln'System
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Figure 4 - Antimotter osteroid almost within ecliptic plone deflected by Sun's gravity
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4. Considerations

At this point we can make some considerations about these trajectories.
First of all, it is important to look at their shape. We can see from the pictures above
that all the trajectories look very similar to hyperbolas.
It is indeed possible to veriff that in the case of the two-body problem with an
antimatter body and a matter "attractor", the only possible trajectory is the leg of a
hyperbola located opposite to the focus with respect to the asymptotes intersection, an
orbit which is impossible to obtain in the case of ordinary matter. See Ref. [6] for
theoretical background.
If we consider only the Sun-Antimatter asteroid system, the conservation of energy
can be written as follows:

Where:
e is the total energy per unit mass
v is the velocity at an arbitrary point of the kajectory
r is the distance from the center of mass of the Sun
It: GMsu, is the gravitational parameter of the Sun

From the above equation we can see that, for a generic matter-antimatter two-body
system, total energy is always positive, and this implies the orbit is always open (in
the case of elliptic orbits total energy is negative).
Moreover, it is possible to derive the equation of eccentricity, starting from the
dynamics of the system:

i:F --;f (7)

Making the cross product of the two members of the equation with the vector ft, which
represents the angular momenfum, we have:

?xh=\1rxn1 (8)
T

After some algebraic manipulations, it is possible to derive the vectorial equation of
eccentricity:

he=fx-+ip

v2uduzu; - ==-*->0z7'zr (6)
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Where:
e is the eccentricity vector
i is the unit vector of the vector r
From this equation we can derive, with other manipulations, the orbit equation:

h'/p
(10 )

ecos0-1
At this point we have a representation of our trajectory in its plane, centered in the
"attractor" body (the Sun in our case), in terms of radial and angular components.
Now we need to veri$, if it is still a conic (like in the matter case), and more precisely
the kind of conic we have assumed.

Figure 9 - Representotion of a hyperbola according to the geometric definition

One definition of conic is the locus of points whose distances to some point, called a
focus, and some line, called a directrix, are in a fixed ratio, called the eccentricity.
Therefore we can write (see Figure 9):

(11)
TTo
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Looking at Figure 9 we can also write (note that the focus considered
opposite to the curve with respect to the directrix):

rcos0-d-ro-do
r(e cos0 - 1) : ro(e - 1)

At this point, with some manipulations:

16@ - L)
ecos0-1

is the one

(12)

(13)

The equation obtained is in the same form of ( 10 ), and considering ( 9 ) we can
calculate the modulus of eccentricity, verifying it is always bigger than 1 (which
corresponds to the hyperbolic case):

,^=ffiffi,, (14)

With these calculations we have successfully demonstrated that the generic trajectory
of a small antimatter body in the gravitational field of a massive matter body is a conic
and more precisely the leg of a hyperbola opposite to the focus with respect to the axis
of symmetry (or the intersection of the asSzmptotes).

In the trajectories above we have the presence of other planets besides the Sun, so we
are definitely not in the case of the two-body problem, but still the trajectories look
very much like hyperbolas. This is because the gravitational effect of the planets is
very small if compared to the effect of the Sun, and negligible outside their spheres of
influence.

Another element that is worth investigating is the problem of the identification of a
minimum approach speed for an antimatter asteroid that allows an impact with Earth.

In the case of matter asteroids, an important parameter is the kinetic energy at impact,
which is connected to the amount of damage caused by the asteroid itself. In the case
of antimatter asteroids it is instead more important to know the kinetic energy far from
Earth, ideally when entering the Solar system, because, being the interaction
repulsive, the kinetic energy is going to decrease while getting closer to the Sun, so a
low initial kinetic energy could mean not being able to reach Earth orbit at all. At
impact, on the contrary, the energy released depends mostly on the annihilation
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between matter and antimatter, so the velocity is less significant (at least in a first
approximation).

To have a first idea of the minimum approach speed we can consider again the two-
body problem (since the gravi[z of the Sun is much bigger than the gravity of other
planets) and look at the conservation of energy. Calling "0" the initial state (far &om
Earth) and "f' the final state (impact with Earth), we can write:

(ls)

(16)

From these equations it is easy to understand that the minimum values of v6 can be
found for the limit case
vf : 0, so when all kinetic energy has been "consumed" and the asteroid reaches Earth
orbit with zero velocity.

Considering a mean value for the radius of Earth orbit, we obtain a minimum velocity
(at 60 Astronomical Units from the center of mass of the Sun) of 41.77 km/s. A big
value for a man-made spacecraft, but not unrealistic for an astronomical object.

In Figure 10, we can see a graph showing the minimum velocity needed to impact
Earth versus the distance from the Sun at which it is calculated. The graph has an
asymptote at 42.12 km/s, which represents the V*, the minimum velocity of the
asteroid when the distance tends to infinity.

All of this is valid for the two-body case. In reality we have all the planets of the
Solar System, including of course Earth, so the trajectories, and hence the minimum
velocities, could be slightly different. To have an idea of how much things change
with the complete model, we can use our backward propagating model and put the
velocity at Earth to zero, cycling only through time, which happens to be the only
variable left. It is possible to see the resdt fut Figure I I .

As we can see, the minimum velocity has almost periodical variations tlrough time,
due to the interactions with the other planets and to the variations in the radius of
Earth's orbit throughout the year. But the presence of the planets can also imply that
the minimum velocity can be found with impact velocity different than zero. Since the
gravitational effect of the planets compared to that of the Sun is almost negligible, we
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Figure 10 - Minimum velocity needed by an antimatter asteroid to reoch Eorth calculated ot vorious
distances from the Sun using the equotions oJ the 2-body problem ond the mean radius of Earth's orbit

do not expect the result to be much different from the two-body case, but there can
still be some variations. To verify this hypothesis , we have to check the true
trajectories in space that have an impact with Earth to find those with minimum
velocity at a given distance from the Sun.

Since a grid search varying all the parameters would be too long and computationally
expensive, the best solution is to make an optimization process to find the best
trajectory. The three components of velocity at impact and the time of arrival have
been used as free parameters, and the modulus of speed has been set at a chosen
distance from the Sun as the objective function to be minimized. As a constraint, the
velocity has been set to be positive.
The best solution found can be seen in Figure 12.

As it is possible to see, the difference from the two-body case is very small, but the
solution found is actually better, in terms of low velocity. Many cycles of
optimizations have been done varying the initial conditions, since this numerical
process is very sensitive to local minima and there is the possibility of missing good
solutions because of a wrong initial guess.
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Another aspect that can be interesting to investigate is the possible direction of arrival
of the asteroid. As we can see, most of figures Figure 5 to Figure 9 show trajectories
where the impacting antimatter asteroid enters the Solar System in a direction very
different from the direction of the Sun. Obviously this depends on the big repulsive
action of the Sun itself, that deflects the asteroids too aligned with the Sun-Earth
direction away from our planet. We want to verifu whether there is a limit in the Sun-
Earth-asteroid angle (see Figure 13), itt order to have collision with Earth. This
information could be useful in the future to know where to look more carefully for a
possible incoming antimatter asteroid.

Another optimization process has been implemented, using the alpha angle as the
objective function to be minimized, and again the three components of velocity at
impact and the time of arrival as optimizationparameters.
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Setting no limit to the velocity far from Earth, we obtain a trajectary with a very
narrow aagle and almost in the shape of a straight line starting very far from the Sun.
This is due to the very high velocity of the asteroid (more than 1000 km/s in the
example of Figure l4), that makes the repulsive effect of the Sun negligible.

antimatter
asteroid

Figure 13 - Schematics of the opproach of an ontimatter asteroid to our planet, with the indicotion of the
alpho ongle between the Earth-Sun vector ond the Earth-asteroid vector (using the position of the

asteroid ot 70 AU from the Sun)

This is kind of a trivial solution, but we can obtain more interesting information by
setting a limit to the speed of the asteroid at a given distance from the Sun. By
varying this limit it is possible to obtain different values {see Figure l5),thatrepresent
the minimum alpha angle achievable to impact Earth without exceeding a given
velocity at a fixed distance from the Sun (an example is shown in Figure l6).
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Trajectory of antimatter asteroid in the inner Solar Systenr
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Minirnurn Srxr-Eryflr-asteroid angle vs raaxirrnrnuelocity at 10 AU
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5. Conclusions

In this paper the author has presented an overview about the problems connected with
the trajectories of antimatter bodies entering the Solar System and with the
possibilities of impact with Earth. The calculations have been based on Santilli's
isodual theory of antimatter [1] because it is the only theory known to the author that
has been specifically constructed for the classical representation of neutral antimatter
bodies, as needed for antimatter asteroids. In particular, the conjugation from classical
and neutral bodies to their antimatter counterparts implies the gravitational repulsion
between matter and antimatter which has been assumed at the foundation of these
calculations.
The main results obtained can be summarized as follows:

1) An antimatter asteroid can actually enter our Solar System and impact Earth, with
initial speeds comparable to those of common celestial bodies

2) An antimatter asteroid would always move around a matter star on an open
hyperbolic orbit, with the star itself in the focus opposite to the trajectory.

3) There is a minimum approach speed (roughly 42kn/s) that changes slightly during
the year (see Figure 11), below which the asteroid would be unable to reach Earth
because ofthe repulsive action ofthe Sun.

4) Depending on the velocity of the asteroid (see Figure 15), there is a minimum angle
between the approaching direction of the asteroid and the Sun (as seen from the
Earth), below which impact with Earth is not possible.

Of course the model used to achieve these results is not complete, and the results
themselves are valid under the correct hypotheses: pointJike masses moving in
vacuum, asteroid mass negligible with respect to the other masses involved, no
interaction other than gravity, so forces are conservative and motion is reversible.
These conditions approximate well the phenomena considered in the real world, but
there are some effects that have not been considered.

The interaction with solar light has been ignored, in part because its entity is supposed
to be secondary with respect to the gravitation, considering also the high speeds
involved, and in part because the effect of matter light hitting an antimatter body is
still unknown (see [4]).

The effect of the solar wind hitting the asteroid has also been ignored. The solar wind
is mainly composed of protons and electrons escaping the Sun's gravity, so at their
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impact with the asteroid they would annihilate releasing energy that would probably
modiS, the asteroid's trajectory during time. The entity of this effect would depend
mostly on the distance from the Sun and the density and speed of the solar wind itself,
which is very variable during time.
Another effect ignored in this study is that of the asteroid belt, located between Mars
and Jupiter orbits, that again could slightly modifli the trajectory, but this effect is
supposed to be very small if compared to the gravitation of the Sun and other planets.

Further studies are needed to better understand the behavior ofthese bodies, since the
research in this field is only at the beginning. Future developments should focus on:

o the effect of matter light on antimatter, not only for the consequences on the
trajectories, but also for the detection itself of the antimatter asteroids (as
explained in I4l) without which we wouldn't be able to locate an incoming
asteroid. Important steps forward have been made for the detection of antimatter
stars and galaxies (see [2] and [3]), but we still don't know anything about cold
bodies that don't have emissions of their own;

o the effect of the solar wind on the trajectories of antimatter bodies. Although
weak, especially far from the Sun, for an approaching asteroid this effect could
become more significant with the passage of time. Moreover, the annihilation of
electrons and protons with the asteroid's surface would produce both matter and
antimatter radiations, and the former, if intense enough, could be seen from Earth
and contribute to the detection of the asteroid itself, so this aspect could be
particularly important to investigate on.

o the effects of the entrance into the atmosphere, that would be important of course
to determine the behavior of the antimatter body and the damages it could deliver
to our planet.
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